Block-ADI Preconditioners for Solving Sparse Nonsymmetric Linear Systems of Equations

نویسنده

  • Sangback Ma
چکیده

There is currently a regain of interest in the Alternating Direction Implicit (ADI) algorithms as preconditioners for iterative methods for solving large sparse linear systems, because of their suitability for parallel computing. However, the classical ADI iteration is not directly applicable to Finite Element (FE) matrices, tends to converge too slowly for 3-D problems, and the selection of adequate acceleration parameters, remains a diicult task. In this paper we propose a Block-ADI approach, which overcomes some of these problems. In particular we derive a simple inexpensive heuristic for selecting the acceleration parameters. The new approach can be viewed as a combination of the classical ADI method and a domain decomposition approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strang-type Preconditioners for Solving Linear Systems from Neutral Delay Differential Equations

We study the solution of neutral delay differential equations (NDDEs) by using boundary value methods (BVMs). The BVMs require the solution of nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed to solve these linear systems. We show that if an Ak1,k2-stable BVM is used for solving an m-by-m system of NDDEs, then our pr...

متن کامل

Block {ω}-circulant preconditioners for the systems of differential equations

The numerical solution of large and sparse nonsymmetric linear systems of algebraic equations is usually the most time consuming part of time-step integrators for differential equations based on implicit formulas. Preconditioned Krylov subspace methods using Strang block circulant preconditioners have been employed to solve such linear systems. However, it has been observed that these block cir...

متن کامل

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations

We consider the solution of delay differential equations (DDEs) by using boundary value methods (BVMs). These methods require the solution of one or more nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed for solving these linear systems. We show that if a Pk1,k2 -stable BVM is used for solving an m-by-m system of DDEs...

متن کامل

JOHN COURTNEY HAWS . Preconditioning KKT Systems . ( Under the direction of

JOHN COURTNEY HAWS. Preconditioning KKT Systems. (Under the direction of Professor Carl D. Meyer.) This research presents new preconditioners for linear systems. We proceed from the most general case to the very specific problem area of sparse optimal control. In the first most general approach, we assume only that the coefficient matrix is nonsingular. We target highly indefinite, nonsymmetric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007